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B E H A V I O R  O F  S U S P E N S I O N S  U N D E R  D Y N A M I C  L O A D I N G  

S. V. Stebnovskii UDC 532.135:532.528 

A homogeneous newtonian liquid having a shearing-stress relaxation time k o of about 10-1~ sec is an almost 

ideally fluid medium; it does not retain shearing stresses at realistic strain rates (the St. Venant limiting stress is zero for it). 

On the other hand, a solid has k o of hours or even much longer times, i.e., shows viscoelastic behavior for arbitrarily low 
shearing strain rates. 

Although there is a vast amount of information on solid failure mechanics [1], research on the failure dynamics of 

homogeneous liquids has begun only quite recently. On sufficiently rapid stretching, a liquid develops cavitation, which is 
accompanied by the formation of discontinuities [2-4], which resemble cracks in a solid. This has been used in research on the 

macrorheological characteristics of a cavitating stretched liquid [5-7], where it has been shown that ko(C~o) increases with the 

volume concentration of cavitation bubbles t~ o, and that such a liquid acquires viscoelastic behavior. However,  the properties 

vary continuously as (:t o increases, which greatly complicates researching the failure mechanism. 
Dynamic .failure is of interest, particularly for a medium that in the equilibrium state has macrorheological 

characteristics intermediate between those of a homogeneous newtonian liquid and a solid (information on failure in such media 
is needed to construct a general model for dynamic failure in condensed media, which include liquids and solids). 

Here I show that emulsions and suspensions in the equilibrium state have characteristics intermediate between newtonian 
liquids and solids, so their behavior on pulsed loading is important in this respect. 

1. Dependence of the rheological characteristics on disperse-phase concentration. According to [[8], the effective 
viscosity/~' is dependent on the volume concentration of the droplets t~ 1 in the emulsion as follows: 
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in which (tXl) ~, = lOO is the volume concentration of droplets corresponding to ~ '  = 100. 
Consider a dispersed-solid suspension for low values of the volume concentration of solid particles t~ 2, where the 

effective viscosity #" is independent of the strain rate ~ but increases with ct 2, which is closely described by the Mooney 

equation [9] 

"~" = / + " ( a 2 ) / / t " ( a  2 = 0) = exp[koa.,/(1 - a2 /a2 .  ) I. (1.2) 

Here k o = 2.5 for rigid spherical particles, while c~2. is the maximum volume concentration of the particles for the closest 

packing (c(2. = 0.74-0.77). However, ~t" increases rapidly with (x 2 above 0.35, and (1.2) does not correspond to the process, 

since the medium acquires the state of a non-newtonian liquid and for ~2 --" ~2. loses its mobility and goes over to the bound 
state. As ~ increases, the/~." decreases, which corresponds to c~2., on account of reorientation of the unsymmetrical particles, 

disruption of the aggregates, and other factors. 

For characteristic shearing-strain times At much less than the shearing-stress relaxation time X o, a liquid behaves as 

an elastic body of rubber type. Therefore, for an emulsion with A~ < < k o, one can neglect the difference in the elastic moduli 

for shearing in a liquid matrix Gl~. and the liquid dispersed phase G2~ . ,  and the medium can be considered as a continuous 

solid having the dynamic shear elastic modulus G~.' = GI~..  Then from (1.1) we have the relation for the shear-stress 
relaxation time in an emulsion: 
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Then as the bulk concentration of droplets increases, so does this relaxation time in an emulsion, which acquires 

viscoelastic behavior. The elastic energy in such a medium accumulation during shearing on account of  droplet deformation, 

i.e., increase in surface energy. 
For At < < k o, a suspension can also be represented as an elastic rubber-type body, but filled with more rigid panicles 

of corresponding shape. Then the expression for the elastic modulus [9] gives 

O " =  I + (k  o - I)B,.~ 2 (1.4) 
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in which B = (G2=/Gt= - 1)/IG2=/G~= + (k o - 1)], G=" being the shearing modulus of the suspension; k o = 2.5 for rigid 

spherical particles, and G2= is the dynamic shear modulus of the particle material. As G 1=/G2= < 1, we have on the basis 

that k o = 2.5 
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and consequently we get from (1.4) that 
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Then we use (1.2) and (1.5) to get the shearing-stress relaxation time in a suspension as 
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which implies that k"(~2) increases with ~x 2 as that quantity goes from 0 to r and for A~ < < X", the system will accumulate 

elastic energy. However, energy accumulation in a suspension can occur only on account of the elastic strain energy in the solid 

particles. If the panicles are virtually incompressible, i.e., (32= --, oo, (1.5) implies that for low and medium o~ 2 
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and correspondingly form (1.6) 
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However, the increase in/z" is bounded as a 2 increases, since/z" decreases as k increases [9], and 

' --~ 0 for G 2 -~ co, a 2--,c~2. ' 
G " o =  

(1.7) 

i.e., the elastic stresses in shear strain relax almost instantaneously in a highly concentrated suspension of  undeformable 

particles, and only viscous stresses are present, which are dependent on the strain rate. 

Emulsions and suspensions thus take an intermediate position in the rheological series between newtonian liquids and 

solids, so research on the failure dynamics is important. 
2. I have examined by experiment the behavior of restricted volumes (specimens) of emulsions and suspensions in 

shock-wave loading followed by stretching in the unloading wave. The emulsion consisted of drops of  1-20 machine oil (size 
0.05-0.6 cm) in an aqueous alcoholic solution having a volume concentration of droplets cq -- 0.3; that medium is denoted 

byC1 .  
I also examined three types of suspension: sand with particle size 30-100/zm and c~ 2 = 0.65-0.7 (c~ 2 close to ~2.) in 

water (medium C2); spherical elastic particles of  divinylbenzene-styrene copolymer (density p 1 = 1.05-1.08 g/cm 3, particle 

size 50-500/zm) suspended in water with added glycerol to equalize the densities of the dispersed phase and matrix and having 

volume particle concentration a2 = 0.35 (medium C3); and one with the same composition but having o~ 2 = 0.65 (medium 

C4). 

The shock loading was provided by exploding a thin manganic wire 1 (type PMM, diameter 0.02 cm, Fig. la, b) 

having length H = 3 cm by the discharge of  a bank of high-voltage capacitors (C = 1/zF, U = 17 kV). The experiments were 

performed in two ways: 1) generating a cylindrical shock wave 2 (Fig. la) in a planar tank (50 • 40 x 3 cm) having parallel 

transparent walls 3 and filled with the medium 4; 2) shock loading by exploding the wire 1 (Fig. lb) in a cylindrical volume 

of medium 2 having radius ROl and bounded by the transparent plane-parallel plexiglas walls 3 and the thin paper readily- 

broken cylindrical shell 4. In the first state, the shock-wave parameters were measured with the pressure sensor 5 (Fig. la) 

placed at various distances l from the wire axis. 

An SFR-1 high-speed camera recorded the flow at the stretching stage after reflection of the cylindrical shock wave 

from the planar free surface 6 (Fig. la) in the first state and from the cylindrical free surface 4 (Fig. lb) in the second state, 

which was placed in a plane perpendicular to the wire axis. 

3. The following result were obtained. The series of experiments with cylindrical waves showed that the damping rate 

for a given t~ 1 (or correspondingly c~ 2) was dependent on the ratio of the acoustic impedance of the matrix material z 1 and the 

dispersed phase z 2 for an emulsion: 

k' = z~= (p~ Kll'/2 (3.1) 
~2 ~P2 K2) 

while for a suspension 
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in which K 1, K 2, and G 2 are the fulk and shear elastic moduli. 

Figure 2 shows typical pressure waveforms. Here a are the test waveforms in pure water (wave amplitude P0 = 3.4.107 

l = 2 cm, Po = 3-1"107 Pa for I = 3 cm, and P0 =2.7'107 Pa for l = 4 cm); b represents the C1 medium with l = 4 cm and 

shows the ratio of the wave amplitude P~(I = 4 cm) namely P, = P*/P0 = 1; c is for medium C4 with I = 4 era, where P.  

= 0.9; and d is for C2 where P. = 0.09 for l = 2 cm, P .  = 0.04 for I = 3 cm, and P.  = 0.03 for I = 4 cm (in the last case, 

the amplitude attenuation and the profile evolution agreed well with the [11] data). 

From (3.1) and (3.2), C1, C3, C4 and C2 kcl '  = 1 > k"  = kc3" = k c 4  = 0.78 > k c 2 "  = 0.012 for the four 

media, and P.(I = 4 era) I.Cl = I > P.(I = 4 cm) I ca = 0.9 > P. (I = 4 cm) [ c2 = 0.013 correspondingly, i.e., the less 
k, the more rapid the damping. As k' and k"are determined by the ratios of the elastic moduli of matrix and dispersed phase, 

one can assume that at least one of the main reason for the damping in a highly concentrated suspension is that the energy is 

dissipated at the particles because of the difference in compressibility between the liquid matrix and the particles. 

The compression-wave damping is dependent also on the particle concentration,but here the wave processes are 

considered only for highly concentrated suspensions and only to the extent that they given an indication of  the wave parameters 

and the tension in the medium arising at the unloading stage. 

High-speed recording of emulsion C1 behind the compression front and in the unloading zone showed as follows. The 

drops, even of the largest size (0.4-0.6 cm), remained undisrupted after interaction with the shock wave: the emulsion is an 

essentially transparent medium for the compression wave. In the unloading stage, cavitational bubbles arise at the interfaces 

and in the drops and fragment the medium. At the loading rates and energies used in these experiments, the process does not 

differ qualitatively from cavitational failure in a homogeneous liquid [5-7, 12]. Special research is needed to determine the 

quantitative characteristics. 

Figure 3 shows typical recordings of the structure evolution in a suspension due to stretching in the unloading zone 

after reflection from the free surface. Here a is the loading state in accordance with Fig. la, with h = 1 cm the distance from 

the wire to the free surface in medium C2, where the solid particles were lyophilic, i.e., wetted by the liquid; b represents also 

Fig. la with h = 1 cm and a test medium consisting of dry sand at the poured density, i.e., a difference form C2 was there 

here the gaps between the particles were filled by air, and in such a medium there is no conneetedness apart from the elasticity 

of the air; c shows loading as in Fig. lb, where Rot(0) = 2 cm with medium C4, and where the solid particles were lyophobic, 

i.e., not wetted by the liquid. 

Parts a and b of Fig. 3 show that the liquid component in C2 produces cormectedness because of  the wetting, and this 

results in cellular structures in the unloading stage, in contrast to the air-sand medium (Fig. 3a, frames 3 and 4). The ceils are 

formed because pores grow in the stretched suspension. 

Figure 3a shows that the volume of the dome 1 is greater than that of the explosion cavity 2 at the corresponding stage, 

and since the dispersed phase and matrix are incompressible, it can be explained 0nly by the growth of  pores (the mode of 

formation and growth is not considered here). However, pore growth should [6] reduce the dynamic shear modulus, and thus 

increase the shear relaxation time. When the medium is stretched, the sand particles remain almost unperformed, and (1.7) 

shows that X" is close to X o for low and medium ~2, while X" --) 0 for '~2 ") a2 *'~" -* 0. Then as the pore concentration o~ 0 
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increases in medium C2, the compressibility should increase, i.e., Go," is reduced at least without reducing/z". Consequently, 
X" =/~"/Go," in C2 should increase with c~ 0. 

It is extremely difficult to determine the a0 dependence of ~", and this requires detailed experiments on the morphology 
evolution in a three-phase medium at various stretching rates. 

There is extensive shock-wave energy dissipation when C2 is loaded, so discontinuities are not formed during the 
unloading stage because of the low stretching rate: disruption occurs only because the pores are transformed to cells (Fig. 3a) 
followed by capillary break-up in the links between them. The links consist of liquid matrix containing solid particles in the 

bound state on account of the wetting forces. 
The [13] method shows that after the dome 1 has broken up (Fig. 3a), there is a flow of droplet-type fragments 

consisting of solid particles bound by the liquid, as shown in Fig. 4a, which shows a photograph of imprints from the fragments 
on the immersion layer (1 is the outer boundary of an imprint from the liquid component of a fragment and 2 those from the 

solid particles present in it). If a fragment during flight breaks up into smaller elements, they also consist of particles linked 
by liquid. A lyophilic suspension thus has stable structure: the fragments formed after disruption retain the features of the 
lyophilic suspension. 

The radial stretching for the cylindrical volume of C4 in the unloading zone (Fig. 3c) shows that the volume increases 
during the stretching because pores develop, which in that case are probably of cavitational origin, and cellular structures are 
formed by their unlimited growth (Fig. 3c, frames 3 and 4). However, a difference from C2 is that C4 produces separation 
between the fractions: lyophobic particles are injected from the liquid matrix into the atmosphere in such a way that the thin 
links between cells contain virtually none of them. 

The fragmentation of C4 results in escaping liquid droplets containing hardly any particles together with a flux of 
lyophobic particles, as is evident from the histogram (Fig. 4b) constructed by the method described in [13]. Here nl is the 
number of fragments in the flow having suspension features, namely consisting of solid particles and liquid matrix, while n2 
is the number of pure droplets, and n3 the number of solid particles. 

4. We explain the structure formation in the fragments by considering the condition for thermodynamic stability of the 
suspension structure in relation to the lyophilicity, and also to the volume and number concentrations. We assume that the 
particles are frozen into the liquid matrix. 

We compared the levels of the free energy F' for system 1 (Fig. 5a) consisting of a suspension fragment containing 
a liquid matrix (1) and solid particles (2) and also of the surrounding air shell (0) with the energy level F" of system 2 (Fig. 
5b) to which system 1 (subsequently sl) goes over when the structure becomes unstable: separation of the liquid and solid 
phases. The isothermal transition of sl to system 2 (subsequently s2) is produced only by capillary and inertial forces. The 
dashed lines indicate the boundaries of the systems, including the air shells, which are such that the total volumes of the systems 
coincide Here S 1 is the free surface of sl, which contains N spherical particles (for convenience) equal in size, while S t' is 
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the free surface of  the liquid volume from which all the particles in the air shell have been removed (Fig. 5b), S 2 is the surface 

of a solid particles, and alO, o'12, and a2o are the interfacial tensions at the liquid-air, liquid-solid, and solid-air boundaries 
respectively. 

Then the difference between the levels of the total free energy for sl. 

F' = PuVoFo + piVtF1 + p2V2F2 + aloS 1 + al2S2N (4.1) 

and s2 

F".= PoVoFo + pIVIFI + p2V2F2 + aioS' t + (72oS2N (4.2) 

is put as follows on the basis of the incompressibility during the transition: 

AF = F"  - Y' = (S' t - Sl)at0 + NS2(a2o - al2), (4.3) 

in which Pi, ViFi(i = 0, I, 2) are the densities, volumes, and free energies per unit mass respectively for the media (0), (I), 
and (2). With o~ 2 the volume concentration of the dispe~sed phase in sl, then the volume content of the liquid in the system 

is 1 - ~2. As the fragment in sl and the liquid volume in s2 are spherical, we have on the basis that the liquid is 
incompressible and the relation between the volume V and surface S of a sphere V = S3/2/6wrTr that 

S' t = (1 - a2)~/3Sl. (4.4) 

Now let V 1 be the liquid volume in the system and V 2 the volume of a spherical particle; then ct 2 = NV2/(NV 2 + 
V1 ) = NS23/2/(NS23/2 + S1,3/2), and from (4.1) we have 

3 

NS 2 = S ~ .  (4.5) 

Finally, we substitute (4.4) and (4.5) into (4.3) and use the standard condition for the equilibrium in interracial tension at the 

common boundary of the media (0), (1), and (2), a2o - ~r12 = alocos0 (0 is the wetting angle for the solid surface by the 
liquid) to get 

AF = $1{~'~2 cos0 - 11 - (1 - a2)2"3]ta,o. (4.6) 

If  AF > 0, sl is stable, since the transition to s2 is accompanied by an increase in the free energy; if AF < 0, sl is 

thermodynamically unstable. 

From (4.6), the thermodynamic stability of the fragment structure is dependent on the volume and number 

concentrations of the particles, as well as on the angle/9 characterizing the wettability of the particles by the given liquid. 

Figure 5c shows a family of AF(~ 2, 0, N = Nj) = 0 curves constructed from (4.6). Each curve separates a region of 

stability AF(%, 0, Nj) > 0 from a region of instability s 0, Nj) < 0 in the sl structure as functions of  # and t~ 2 for a 
given N = Nj. Under otherwise equal conditions, increase in N is a stabilizing factor for the sl structure. For a given Nj, the 

structure is the more stable the higher the wettability (i.e., the less 0) and the lower t~ 2. If  8 < 42", the sl structure is 

thermodynamically stable for any Nj >__ 1 and 0 < ~2 < ~2. = 0.77. If  0 > 90", the sl structure is unstable for any Nj and 
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< c~2 < ~2"" We tan demonstrate this on an example where the solid particles are completely unwettable, i.e., 0 = 180 ~ 
Then sl is the liquid matrix (1) located in the air medium (0) (Fig. 5a) and containing spherical particles (2), but with the 

surface S 2 of  the particles separated from the liquid by thin air layers. We denote the volume of an air layer by '"o and the 
surface area at the liquid-air layer boundary by S 3. Then the total free energy of sl  is 

F' = PoVoFo + plVtFz + p2V2F2 + NPoWoFo + Slcrlo + N(Ss~ + S2Cr~o)" (4.7) 

The total free energy becomes as follows when sl becomes s2 because of the separation between the liquid and solid phases: 

F" = poVoFo + p~V~F~ + p2V2F2 + NPoO%F o + S'~a,o + NS2Cr2o. (4.8) 

We subtract (4.7) from (4.8) to get 

A F  = F"  - F' = - (Sl + NS3 - S',)azo" (4.9) 

Then as S 1 > S 1 ' for any AF < 0 and N > 1, i.e., sl is thermodynamically unstable, since on transition to s2, the total free 

surface is reduced by NS 3, so the free energy is reduced by NS3a2o. 
This thermodynamic stability analysis involves the assumption that the particles are frozen in the liquid, so one can 

separate the liquid and solid phases only by deforming the volume of the suspension, in which particle 1 (Fig. 6a, b) is near 

the free surface 2 and is repelled by capillary forces into the atmosphere (lyophobic case, Fig. 6a) or return from the free 

surface into the liquid volume (lyophilic case, Fig. 6b). 

However,  Pl ~ P2 ill almost any suspension, so in a real failure process, the particle may be displaced with respect 
to the liquid at some velocity uj. Then the structure stability is dependent on the ratio between the kinetic energy of the particle 

Ej and the difference in the surface energies in the liquid and the atmosphere, i.e., the condition for emergence of particle 1 
of radius rj from volume 2 (Fig. 6c) is written as follows without allowance for the viscous losses: 

2 ~ 4~aloCOSO ' (4.10) = " ,  > - : , ,  = 
o S 2 ~  

in which F12 = 4"xrj2~rl2 and F20 = 4ztrj2o20 are the surface energies of a spherical particle in the liquid and after emergence 

into the atmosphere respectively; O < 90", since Ej > 1=2o - Fz2 for any uj for O > 90*. It follows from (4.10) that if uj 
satisfies 
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> Vr~2COSO for 0 ~ 90 ~ , 
(4.11) 

the particle will overcome the surface elasticity and escapes into the atmosphere, while if (4.11) is not obeyed, the capillary 

forces return the particle to the liquid. 
In the lyophilic C2 medium, C2 O < 10 ~ 02 = 2.6 g/cm 3, and rj _< 0.005 cm, ~rl0 = 72.3 g/sec 2, and from (4.11) 

the particle will emerge from the liquid into the atmosphere ifuj > 1.8 m/sec, which is unrealistic because the rate of increase 
in the linear dimensions of the medium during stretching in the experiments did not exceed 3-4 m/see. Then the structure of C2 

is preserved during the fragrnention: the phases do not separate. On the other hand O > 90 ~ for C4, and (4.6) and (4.9) imply 
that the structure is unstable even if the particles are frozen in (uj = 0). The research was performed with financial support 
from the Russian Fundamental Research Fund in accordance with project 93-013-16383. 
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